crystal clear mathematics logo

bannerabout
graemethin
bannerdive
graemethin2

Sign up to my Newsletter

EASIER THAN YOU THINK...

Complex Numbers

Calculation of e to the i pi showing that it is equal to negative oneFor many years, mathematicians avoided using or thinking about the square root of negative numbers.  Preferring to think in terms of real numbers, they simply agreed with each other that roots of negative numbers made no sense at all (for similar reasons, negative numbers were avoided for many centuries).  After all, there is no physical length that can possibly equal such a number.  What possible use or relevance could it have for our world?

The Italian mathematician Gerolamo Cardano (1501-1576) was the first to have explored complex numbers seriously. He used them in order to find solutions to cubic equations … and called them “fictitious.”  Little did he realise what an incredible explosion of understanding would result from his first foray into this field!

It transpires that complex numbers are intimately connected with exponential equations and with trigonometry (see the image to the left, where i represents √(-1) and is called an “imaginary number”).

Nowadays, complex numbers are used whenever any repetitive, cyclic, or wave motion is being analysed (from star light to quantum mechanics to electric tuning circuits to shock waves during earthquakes)!  Not only do mathematicians study them for the pure joy (and fascination) of the exercise, but they are used in many disciplines such as physics, chemistry, biology, engineering, statistics and economics.

Briefly, an imaginary number is one that is obtained by taking the square root of a negative number.  If we define √(-1) as i (meaning imaginary), all imaginary numbers can be written as the product of i and some real number.  This is because √(-k) = √(-1)⋅√k = i√k, where √k is real.

Complex numbers are hybrid numbers, obtained when we add a real number and an imaginary number together … such as 2 + 3i.

There is much, much more … so, watch this space!

You are an excellent teacher … Would have been a different world for me had I had one like you … (born 49) left school in 9th grd. Still love math and don’t understand people who do not … You lay knowledge on a silver platter and it is much appreciated …

gregsphere (on a CCM YouTube video about How to Subtract [Large] Numbers Easily)

See all Testimonials

Sign up to my Newsletter

Copyright © Crystal Clear Mathematics | All Rights Reserved

Website Design: www.webdesignnsw.com.au | Photography: Katieriversphotography.com.au